Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.876
Filtrar
1.
Mol Cell ; 82(13): 2472-2489.e8, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537449

RESUMO

Disruption of antagonism between SWI/SNF chromatin remodelers and polycomb repressor complexes drives the formation of numerous cancer types. Recently, an inhibitor of the polycomb protein EZH2 was approved for the treatment of a sarcoma mutant in the SWI/SNF subunit SMARCB1, but resistance occurs. Here, we performed CRISPR screens in SMARCB1-mutant rhabdoid tumor cells to identify genetic contributors to SWI/SNF-polycomb antagonism and potential resistance mechanisms. We found that loss of the H3K36 methyltransferase NSD1 caused resistance to EZH2 inhibition. We show that NSD1 antagonizes polycomb via cooperation with SWI/SNF and identify co-occurrence of NSD1 inactivation in SWI/SNF-defective cancers, indicating in vivo relevance. We demonstrate that H3K36me2 itself has an essential role in the activation of polycomb target genes as inhibition of the H3K36me2 demethylase KDM2A restores the efficacy of EZH2 inhibition in SWI/SNF-deficient cells lacking NSD1. Together our data expand the mechanistic understanding of SWI/SNF and polycomb interplay and identify NSD1 as the key for coordinating this transcriptional control.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas F-Box , Histona-Lisina N-Metiltransferase , Histona Desmetilases com o Domínio Jumonji , Proteínas do Grupo Polycomb , Proteína SMARCB1 , Cromatina/genética , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Células Tumorais Cultivadas/metabolismo
2.
FEBS J ; 289(5): 1302-1314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34036737

RESUMO

Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress toward understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will be summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.


Assuntos
Carcinogênese/genética , Epigênese Genética , Histonas/genética , Neoplasias/genética , Transcrição Gênica , Células Tumorais Cultivadas/metabolismo , Antineoplásicos/uso terapêutico , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células/efeitos dos fármacos , Cromatina/química , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/patologia
3.
STAR Protoc ; 2(3): 100657, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34278337

RESUMO

This protocol describes the necessary preparations and procedures to photo-activate Yes-associated protein (YAP) with optoYAP in cancer cell spheroids in 3D collagen matrices. We detail steps for immunofluorescent staining of the resulting YAP-activated HeLa spheroids. In addition, we describe handling of optoYAP on 2D substrates. While this protocol focuses on the use of optoYAP in 3D HeLa cell culture, it can be modified for other cell types. For complete details on the use and execution of this protocol, please refer to Illes et al. (2021).


Assuntos
Técnicas de Cultura de Células/métodos , Optogenética/métodos , Esferoides Celulares , Células Tumorais Cultivadas , Proteínas de Sinalização YAP , Colágeno/química , Imunofluorescência , Géis/química , Células HeLa , Humanos , Plasmídeos/genética , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
4.
Int J Biol Macromol ; 184: 768-775, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174305

RESUMO

Polysaccharide hydrogels are promising candidate matrices for recapitulating the characteristics of extracellular matrix (ECM) in breast tumors in terms of their structure and composition. Herein, to obtain an ECM-mimetic matrix, hydroxyethyl chitosan (HECS) hydrogels were prepared through Schiff-base crosslinking reaction using dialdehyde hyaluronic acid as crosslinker. The obtained HECS hydrogels displayed a highly porous structure, a stiffness comparable to that of breast tissue, and a fast water-absorption speed. The amount of crosslinker had great effects on the swelling and rheological behaviors of the HECS hydrogels. Preliminary results from in vitro biological assessments confirmed that MCF-7 cells incubated within HECS hydrogels preferred to grow into three-dimensional spheroids. Importantly, the cells displayed enhanced migrative capability and upregulated expression levels of MMP-2, TGF-ß and VEGF in comparison to two-dimension cultured cells. Hence, the HECS hydrogels show great promise as a biomimetic ECM in constructing breast tumor models.


Assuntos
Neoplasias da Mama/metabolismo , Quitosana/química , Matriz Extracelular/metabolismo , Ácido Hialurônico/química , Hidrogéis/síntese química , Esferoides Celulares/citologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células MCF-7 , Metaloproteinase 2 da Matriz/metabolismo , Porosidade , Bases de Schiff , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Cancer Immunol Immunother ; 70(10): 2911-2924, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33693963

RESUMO

The multiple myeloma (MM) landscape has changed in the last few years, but most patients eventually relapse because current treatment modalities do not target clonogenic stem cells, which are drug-resistant and can self-renew. We hypothesized that side population (SP) cells represent myeloma clonogenic stem cells and, searching for new treatment strategies, analyzed the anti-myeloma activity of natural killer (NK) cells against clonogenic cells. Activated and expanded NK cells (NKAE) products were obtained by co-culturing NK cells from MM patients with K562-mb15-41BBL cell line and characterized by flow cytometry. Functional experiments against MM cells were performed by Eu-TDA release assays and methylcellulose clonogenic assays. Side population was detected by Dye Cycle Violet labeling and then characterized by flow cytometry and RNA-Seq. Self-renewal capacity was tested by clonogenic assays. Sorting of both kind of cells was performed for time-lapse microscopy experiments. SP cells exhibited self-renewal potential and overexpressed genes involved in stem cell metabolism. NK cells from MM patients exhibited dysregulation and had lower anti-tumor potential against clonogenic cells than healthy donors' NK cells. Patients' NK cells were activated and expanded. These cells recovered cytotoxic activity and could specifically destroy clonogenic myeloma cells. They also had a highly cytotoxic phenotype expressing NKG2D receptor. Blocking NKG2D receptor decreased NK cell activity against clonogenic myeloma cells, and activated NK cells were able to destroy SP cells, which expressed NKG2D ligands. SP cells could represent the stem cell compartment in MM. This is the first report describing NK cell activity against myeloma clonogenic cells.


Assuntos
Linhagem Celular Tumoral/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/metabolismo , Células Tumorais Cultivadas/metabolismo , Humanos
6.
Electrophoresis ; 42(5): 605-625, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33188536

RESUMO

Cancer is one of the leading causes of annual deaths worldwide, accounting for nearly 10 million deaths each year. Metastasis, the process by which cancer spreads across the patient's body, is the main cause of death in cancer patients. Because the rising trend observed in statistics of new cancer cases and cancer-related deaths does not allow for an optimistic viewpoint on the future-in relation to this terrible disease-the scientific community has sought methods to enable early detection of cancer and prevent the apparition of metastatic tumors. One such method is known as liquid biopsy, wherein a sample is taken from a bodily fluid and analyzed for the presence of CTCs or other cancer biomarkers (e.g., growth factors). With this objective, interest is growing by year in electrokinetically-driven microfluidics applied for the concentration, capture, filtration, transportation, and characterization of CTCs. Electrokinetic techniques-electrophoresis, dielectrophoresis, electrorotation, and electrothermal and EOF-have great potential for miniaturization and integration with electronic instrumentation for the development of point-of-care devices, which can become a tool for early cancer diagnostics and for the design of personalized therapeutics. In this contribution, we review the state of the art of electrokinetically-driven microfluidics for cancer cells manipulation.


Assuntos
Biomarcadores Tumorais , Eletroforese , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Células Tumorais Cultivadas , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/terapia , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/metabolismo , Células Tumorais Cultivadas/química , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/metabolismo
7.
STAR Protoc ; 1(2): 100048, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33111094

RESUMO

The metabolic activity of cells is interrelated with cell signaling, functions, and fate. Uncontrolled cancer cell proliferation requires metabolic adaptations. Research focusing on understanding the characteristics of cell metabolism is crucial for the development of novel diagnostic and therapeutic strategies. Here, we describe protocols for the ATP profiling of single cancer cells by fluorescence live-cell imaging. In response to distinct metabolic inhibitions, we record individual mitochondrial ATP dynamics using established Förster resonance energy transfer-based genetically encoded fluorescent ATP probes. For complete details on the use and execution of this protocol, please refer to Depaoli et al. (2018).


Assuntos
Trifosfato de Adenosina , Corantes Fluorescentes , Mitocôndrias , Análise de Célula Única/métodos , Células Tumorais Cultivadas , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Imagem Molecular , Ratos , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/metabolismo
8.
J Magn Reson ; 316: 106750, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32480236

RESUMO

Metabolic fingerprinting is a strong tool for characterization of biological phenotypes. Classification with machine learning is a critical component in the discrimination of molecular determinants. Cellular activity can be traced using stable isotope labelling of metabolites from which information on cellular pathways may be obtained. Nuclear magnetic resonance (NMR) spectroscopy is, due to its ability to trace labelling in specific atom positions, a method of choice for such metabolic activity measurements. In this study, we used hyperpolarization in the form of dissolution Dynamic Nuclear Polarization (dDNP) NMR to measure signal enhanced isotope labelled metabolites reporting on pathway activity from four different prostate cancer cell lines. The spectra have a high signal-to-noise, with less than 30 signals reporting on 10 metabolic reactions. This allows easy extraction and straightforward interpretation of spectral data. Four metabolite signals selected using a Random Forest algorithm allowed a classification with Support Vector Machines between aggressive and indolent cancer cells with 96.9% accuracy, -corresponding to 31 out of 32 samples. This demonstrates that the information contained in the few features measured with dDNP NMR, is sufficient and robust for performing binary classification based on the metabolic activity of cultured prostate cancer cells.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas/metabolismo , Isótopos de Carbono , Linhagem Celular Tumoral , Humanos , Masculino , Razão Sinal-Ruído , Máquina de Vetores de Suporte
9.
Purinergic Signal ; 16(2): 231-240, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32440820

RESUMO

Exosomes, small-sized extracellular vesicles, carry components of the purinergic pathway. The production by cells of exosomes carrying this pathway remains poorly understood. Here, we asked whether type 1, 2A, or 2B adenosine receptors (A1Rs, A2ARs, and A2BRs, respectively) expressed by producer cells are involved in regulating exosome production. Preglomerular vascular smooth muscle cells (PGVSMCs) were isolated from wildtype, A1R-/-, A2AR-/-, and A2BR-/- rats, and exosome production was quantified under normal or metabolic stress conditions. Exosome production was also measured in various cancer cells treated with pharmacologic agonists/antagonists of A1Rs, A2ARs, and A2BRs in the presence or absence of metabolic stress or cisplatin. Functional activity of exosomes was determined in Jurkat cell apoptosis assays. In PGVSMCs, A1R and A2AR constrained exosome production under normal conditions (p = 0.0297; p = 0.0409, respectively), and A1R, A2AR, and A2BR constrained exosome production under metabolic stress conditions. Exosome production from cancer cells was reduced (p = 0.0028) by the selective A2AR agonist CGS 21680. These exosomes induced higher levels of Jurkat apoptosis than exosomes from untreated cells or cells treated with A1R and A2BR agonists (p = 0.0474). The selective A2AR antagonist SCH 442416 stimulated exosome production under metabolic stress or cisplatin treatment, whereas the selective A2BR antagonist MRS 1754 reduced exosome production. Our findings indicate that A2ARs suppress exosome release in all cell types examined, whereas effects of A1Rs and A2BRs are dependent on cell type and conditions. Pharmacologic targeting of cancer with A2AR antagonists may inadvertently increase exosome production from tumor cells.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Exossomos/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Exossomos/metabolismo , Masculino , Fenetilaminas/farmacologia , Ratos , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo
10.
Int J Biol Sci ; 16(7): 1238-1251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174798

RESUMO

microRNAs (miRNAs) are small non-coding RNAs acting as negative regulators of gene expression and involved in tumor progression. We recently showed that inhibition of the pro-metastatic miR-214 and simultaneous overexpression of its downstream player, the anti-metastatic miR-148b, strongly reduced metastasis formation. To explore the therapeutic potential of miR-148b, we generated a conjugated molecule aimed to target miR-148b expression selectively to tumor cells. Precisely, we linked miR-148b to GL21.T, an aptamer able to specifically bind to AXL, an oncogenic tyrosine kinase receptor highly expressed on cancer cells. Axl-148b conjugate was able to inhibit migration and invasion of AXL-positive, but not AXL-negative, cancer cells, demonstrating high efficacy and selectivity in vitro. In parallel, expression of ALCAM and ITGA5, two miR-148b direct targets, was reduced. More importantly, axl-148b chimeric aptamers were able to inhibit formation and growth of 3D-mammospheres, to induce necrosis and apoptosis of treated xenotransplants, as well as to block breast cancer and melanoma dissemination and metastatization in mice. Relevantly, axl aptamer acted as specific delivery tool for miR-148b, but it also actively contributed to inhibit metastasis formation, together with miR-148b. In conclusion, our data show that axl-148b conjugate is able to inhibit tumor progression in an axl- and miR-148b-dependent manner, suggesting its potential development as therapeutic molecule.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/fisiopatologia , MicroRNAs/metabolismo , Células Neoplásicas Circulantes , Células Tumorais Cultivadas/metabolismo , Células Tumorais Cultivadas/fisiologia
11.
Int J Cancer ; 147(2): 519-531, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32077087

RESUMO

Disseminated tumor cells (dTCs) can frequently be detected in the bone marrow (BM) of colorectal cancer (CRC) patients, raising the possibility that the BM serves as a reservoir for metastatic tumor cells. Identification of dTCs in BM aspirates harbors the potential of assessing therapeutic outcome and directing therapy intensity with limited risk and effort. Still, the functional and prognostic relevance of dTCs is not fully established. We have previously shown that CRC cell clones can be traced to the BM of mice carrying patient-derived xenografts. However, cellular interactions, proliferative state and tumorigenicity of dTCs remain largely unknown. Here, we applied a coculture system modeling the microvascular niche and used immunofluorescence imaging of the murine BM to show that primary CRC cells migrate toward endothelial tubes. dTCs in the BM were rare, but detectable in mice with xenografts from most patient samples (8/10) predominantly at perivascular sites. Comparable to primary tumors, a substantial fraction of proliferating dTCs was detected in the BM. However, most dTCs were found as isolated cells, indicating that dividing dTCs rather separate than aggregate to metastatic clones-a phenomenon frequently observed in the microvascular niche model. Clonal tracking identified subsets of self-renewing tumor-initiating cells in the BM that formed tumors out of BM transplants, including one subset that did not drive primary tumor growth. Our results indicate an important role of the perivascular BM niche for CRC cell dissemination and show that dTCs can be a potential source for tumor relapse and tumor heterogeneity.


Assuntos
Medula Óssea/patologia , Neoplasias Colorretais/patologia , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Mesenquimais/citologia , Células Neoplásicas Circulantes/patologia , Células Tumorais Cultivadas/citologia , Animais , Medula Óssea/metabolismo , Rastreamento de Células , Técnicas de Cocultura , Neoplasias Colorretais/metabolismo , Proteínas de Fluorescência Verde/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células Neoplásicas Circulantes/metabolismo , Imagem Óptica , Prognóstico , Nicho de Células-Tronco , Imagem com Lapso de Tempo , Células Tumorais Cultivadas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Exp Clin Endocrinol Diabetes ; 128(4): 263-269, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30669168

RESUMO

PURPOSE: We investigated the expression of vasopressin receptor 2 and 3 on corticotrophin tumor cells, their role in regulating ACTH secretion, and their potential therapeutic implications. METHODS: We retrospectively assessed 52 hospitalized patients with pathologically confirmed ACTH-secreting tumors. The expression of vasopressin receptor 2 and 3 was explored via qualitative and quantitative immunohistochemistry analyses. The role of vasopressin receptors in regulating ACTH secretion was further studied in the AtT-20 cell line. RESULTS: Among 50 cases of pituitary corticotrophin adenoma, 31 were vasopressin receptor 2 positive, 38 were vasopressin receptor 3 positive, and 24 were both vasopressin receptor 2 and 3 positive. Two patients with ectopic ACTH syndrome were vasopressin receptor 3 positive, and one was also vasopressin receptor 2 positive. In 12 patients who underwent bilateral inferior petrosal sinus sampling before surgery, the central ACTH increment ratio after desmopressin stimulation was correlated with vasopressin receptor 2 but not with vasopressin receptor 3 staining intensity. In an in vitro study, the expression of both vasopressin receptor 2 and 3 on AtT-20 cells was confirmed. The vasopressin receptor 2 antagonist Tolvaptan inhibited desmopressin-induced ACTH secretion in a dose-dependent manner. CONCLUSIONS: Both vasopressin receptor 2 and 3 are expressed in ACTH-secreting tumors. Vasopressin receptor 2 rather than vasopressin receptor 3 is the primary receptor that seems to mediate the ACTH response in corticotrophin tumors. A vasopressin receptor 2 antagonist can inhibit ACTH secretion induced by desmopressin in AtT-20 cells.


Assuntos
Síndrome de ACTH Ectópico/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Hipersecreção Hipofisária de ACTH/metabolismo , Receptores de Vasopressinas/metabolismo , Adolescente , Hormônio Adrenocorticotrópico/efeitos dos fármacos , Adulto , Linhagem Celular Tumoral , Desamino Arginina Vasopressina/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo , Adulto Jovem
13.
Philos Trans R Soc Lond B Biol Sci ; 374(1779): 20180228, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31431172

RESUMO

Podosomes are a singular category of integrin-mediated adhesions important in the processes of cell migration, matrix degradation and cancer cell invasion. Despite a wealth of biochemical studies, the effects of mechanical forces on podosome integrity and dynamics are poorly understood. Here, we show that podosomes are highly sensitive to two groups of physical factors. First, we describe the process of podosome disassembly induced by activation of myosin-IIA filament assembly. Next, we find that podosome integrity and dynamics depends upon membrane tension and can be experimentally perturbed by osmotic swelling and deoxycholate treatment. We have also found that podosomes can be disrupted in a reversible manner by single or cyclic radial stretching of the substratum. We show that disruption of podosomes induced by osmotic swelling is independent of myosin-II filaments. The inhibition of the membrane sculpting protein, dynamin-II, but not clathrin, resulted in activation of myosin-IIA filament formation and disruption of podosomes. The effect of dynamin-II inhibition on podosomes was, however, independent of myosin-II filaments. Moreover, formation of organized arrays of podosomes in response to microtopographic cues (the ridges with triangular profile) was not accompanied by reorganization of myosin-II filaments. Thus, mechanical elements such as myosin-II filaments and factors affecting membrane tension/sculpting independently modulate podosome formation and dynamics, underlying a versatile response of these adhesion structures to intracellular and extracellular cues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.


Assuntos
Movimento Celular , Miosina não Muscular Tipo IIA/metabolismo , Podossomos/metabolismo , Humanos , Células Tumorais Cultivadas/metabolismo
14.
Life Sci ; 219: 343-352, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30684543

RESUMO

AIMS: Multicellular tumor spheroids (MCTS) produced by different methods vary in forms, sizes, and properties. The aim of this work was to characterize MCTS formed by six pancreatic cell lines on a non-adherent surface. MATERIALS AND METHODS: Human pancreatic cells were grown in 2D and 3D conditions and compared for the expression of E- and desmosomal cadherins (PCR, confocal microscopy), growth, cell cycling, apoptosis (flow cytometry), and a response to antitumor drugs doxorubicin and gemcitabine (MTT-assay). KEY FINDINGS: Three types of MCTS were identified: BxPC-3, T3M4 formed small number of large and dense spheroids representing type I MCTS; COLO-357 and AsPC-1 generated type II multiple and loose MCTS of different sizes while MiaPaCa-2 and PANC-1 represented type III cultures which grew almost as floating monolayer films. Formation of type I MCTS depended on the simultaneous expression of DSG3 and several DSC proteins; II MCTS expressed solely DSG2-DSC2 but not DSG3, while type III cells either did not express E-cadherin or a pair of DSG and DSC proteins. Cells in type I MCTS but not in types II and III ones quickly became quiescent which correlated with a decrease in the proliferation, increased apoptosis, and a higher resistance to antitumor drugs doxorubicin and gemcitabine. SIGNIFICANCE: Taken collectively, pancreatic cells significantly vary in the expression of desmosomal cadherins, resulting in the formation of MCTS with different characteristics. The sensitivity of MCTS to various drugs depends on the type of cells and the method of spheroid preparation used.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Caderinas de Desmossomos/metabolismo , Pâncreas/citologia , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas/metabolismo , Linhagem Celular , Humanos , Microscopia Confocal , Reação em Cadeia da Polimerase , Esferoides Celulares/ultraestrutura , Células Tumorais Cultivadas/ultraestrutura
16.
Proc Natl Acad Sci U S A ; 115(50): E11671-E11680, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30487219

RESUMO

Tumorigenesis depends on intricate interactions between genetically altered tumor cells and their surrounding microenvironment. While oncogenic drivers in lung squamous carcinoma (LUSC) have been described, the role of stroma in modulating tissue architecture, particularly cell polarity, remains unclear. Here, we report the establishment of a 3D coculture system of LUSC epithelial cells with cancer-associated fibroblasts (CAFs) and extracellular matrix that together capture key components of the tumor microenvironment (TME). Single LUSC epithelial cells develop into acinar-like structures with 0.02% efficiency, and addition of CAFs provides proper tumor-stromal interactions within an appropriate 3D architectural context. Using this model, we recapitulate key pathological changes during tumorigenesis, from hyperplasia to dysplasia and eventually invasion, in malignant LUSC spheroids that undergo phenotypic switching in response to cell intrinsic and extrinsic changes. Overexpression of SOX2 is sufficient to mediate the transition from hyperplasia to dysplasia in LUSC spheroids, while the presence of CAFs makes them invasive. Unexpectedly, CAFs suppress the activity of high SOX2 levels, restore hyperplasia, and enhance the formation of acinar-like structures. Taken together, these observations suggest that stromal factors can override cell intrinsic oncogenic changes in determining the disease phenotype, thus providing fundamental evidence for the existence of dynamic reciprocity between the nucleus and the TME of LUSC.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores de Transcrição SOXB1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Polaridade Celular , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperplasia , Neoplasias Pulmonares/genética , Modelos Biológicos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/genética , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas/metabolismo , Células Tumorais Cultivadas/patologia , Microambiente Tumoral/genética , Regulação para Cima
17.
Methods Mol Biol ; 1817: 47-66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29959702

RESUMO

Specific 3D conditions of cancer cell lines have been optimized over last years, with growing significance of serum-free and xeno-free culture variants. The choice of proper culture media enables cancer stem cells proliferation in primary and stable cell lines. To obtain renal cell cancer stem-like phenotype, we employed media dedicated for mesenchymal cells and adult stem cells. Developed RCC cell line 3D culture system enables effective drug testing, including tyrosine kinase inhibitor anti-cancer cell toxicity. To induce formation of 3D spheroids by RCC cell lines, StemXvivo and NutriStem media must be used. Usage of laminin- or poly-D-lysine coated plates enhances also the formation of spheroids in 3D-promoting media. Seeding is optimal with Caki-1 or ACHN cell lines as well as 786-O or HKCSC cells. Our bio-mimic 3D RCC cell culture model promotes cell viability and stem-related gene expression including E-cadherin, N-cadherin, HIF1, HIF2, VEGF, Sox2, Pax2, and Nestin. 3D spheroid formation ability and spheroid volume increase are disturbed upon drug treatment. Untreated 3D structures reach ~100 µm in diameter at the end of 14-day long experiment. Sorter-based cell cycle analysis and Ki-67 staining should be conducted to verify specific toxicity. We suggest that due to the more complex architecture 3D RCC culture is more relevant to investigate the in vivo-like tumor drug response.


Assuntos
Carcinoma de Células Renais/patologia , Técnicas de Cultura de Células/métodos , Neoplasias Renais/patologia , Células-Tronco Neoplásicas/citologia , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Meios de Cultura/química , Humanos , Neoplasias Renais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Pesquisa com Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/metabolismo
18.
Stem Cell Res ; 27: 109-120, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29414601

RESUMO

BACKGROUND: Colorectal cancer (CRC) liver metastasis is highly unfavorable for patient outcome and is a leading cause of cancer-related death. Pre-clinical research of CRC liver metastasis predominately utilizes CRC cell lines grown in tissue culture. Here, we demonstrate that CRC liver metastases organoids derived from human specimens recapitulate some aspects of human disease. METHODS: Human CRC liver metastases pathological specimens were obtained following patient consent. Tumor disaggregates were plated and organoids were allowed to expand. CRC markers were identified by immunofluorescence. Stem cell genes were analysed by QPCR and flow cytometry. Response to drug therapy was quantified using time-lapse imaging and MATLAB analysis. RESULTS: Organoids showed global expression of the epithelial marker, EpCAM and the adenocarcinoma marker, CEA CAM1. Flow cytometry analysis demonstrated that organoids express the stem cell surface markers CD24 and CD44. Finally, we demonstrated that CRC liver metastases organoids acquire chemotherapy resistance and can be utilized as surrogates for drug testing. CONCLUSION: These data demonstrate that CRC liver metastases organoids recapitulate some aspects of human disease and may provide an invaluable resource for investigating novel drug therapies, chemotherapy resistance and mechanism of metastasis.


Assuntos
Neoplasias Colorretais/complicações , Neoplasias Hepáticas/secundário , Organoides/patologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Citometria de Fluxo , Humanos , Células Tumorais Cultivadas/metabolismo , Células Tumorais Cultivadas/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-29307375

RESUMO

The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 µl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 µM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 µM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Modelos Biológicos , Esferoides Celulares/citologia , Células Tumorais Cultivadas/citologia , Sobrevivência Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2 , Citocinese , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Testes de Mutagenicidade , Albumina Sérica Humana/metabolismo , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas/metabolismo
20.
Pathol Res Pract ; 214(1): 169-173, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29254789

RESUMO

BACKGROUND: Accumulating studies have linked the disruptions of microRNA-10 (miR-10) to acute myeloid leukemia (AML) with NPM1 mutation. However, miR-10 expression and its clinical implication in AML remain poorly defined. Although a recent report showed high serum level of miR-10a was associated with adverse prognosis in AML, herein, we found bone marrow (BM) miR-10 overexpression was not a prognostic biomarker in AML. METHODS: BM miR-10 expression was examined by real-time quantitative PCR in BM mononuclear cells in 115 de novo AML patients and 45 controls. RESULTS: BM miR-10 (miR-10a/b) expression was significantly up-regulated in AML patients, and was positively correlated with each other. Overexpression of miR-10a was associated with lower percentage of BM blasts, whereas miR-10b overexpression tended to correlate with higher percentage of BM blasts. Importantly, miR-10a overexpression was significantly associated with FAB-M3/t(15;17) subtypes and NPM1 mutation, meanwhile, overexpression of miR-10b was correlated with NPM1 and DNMT3A mutations. However, miR-10a/b overexpression was not associated with complete remission rate, and did not have an impact on both leukemia free survival and overall survival time in non-M3 AML patients without NPM1 mutation. CONCLUSIONS: BM miR-10 overexpression is associated with genetic events but not affects clinical outcome in AML.


Assuntos
Medula Óssea/metabolismo , Regulação Leucêmica da Expressão Gênica/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , Linhagem Celular Tumoral/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mieloide Aguda/patologia , Proteínas de Neoplasias/genética , Nucleofosmina , Células Tumorais Cultivadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA